Krylov-Riemann Solver for Large Hyperbolic Systems of Conservation Laws
نویسنده
چکیده
This paper presents a Riemann solver for nonlinear hyperbolic systems of conservation laws based on a Krylov subspace approximation of the upwinding dissipation vector. In the general case, the solver does not require any detailed information of the eigensystem, except an estimate of the global maximal propagation speed. It uses successive flux function evaluations to obtain a numerical flux which is almost equivalent to that of a Godunov scheme with complete upwinding. The new Krylov–Riemann solver is particularly efficient when used for large systems with many nonlinear equations such that typically no explicit expression for the eigensystem is available. Also, no numerical procedures are necessary to compute the eigensystem. Numerical examples demonstrate the excellent performance of the solver with respect to other solvers.
منابع مشابه
Self-similar solutions of the Riemann problem for two-dimensional systems of conservation laws
In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem
متن کاملA Hybrid Riemann Solver for Large Hyperbolic Systems of Conservation Laws
We are interested in the numerical solution of large systems of hyperbolic conservation laws or systems in which the characteristic decomposition is expensive to compute. Solving such equations using finite volumes or Discontinuous Galerkin requires a numerical flux function which solves local Riemann problems at cell interfaces. There are various methods to express the numerical flux function....
متن کاملDerivative Riemann solvers for systems of conservation laws and ADER methods
In this paper we first briefly review the semi-analytical method [20] for solving the Derivative Riemann Problem for systems of hyperbolic conservation laws with source terms. Next, we generalize it to hyperbolic systems for which the Riemann problem solution is not available. As an application example we implement the new derivative Riemann solver in the high-order finite-volume ADER advection...
متن کاملNumerical Methods for Hyperbolic Conservation Laws with Stiff Relaxation II. Higher-Order Godunov Methods
We present a higher order Godunov method for hyperbolic systems of conservation laws with stii, relaxing source terms. Our goal is to develop a Godunov method which produces higher order accurate solutions using time and space increments governed solely by the non-stii part of the system, i.e., without fully resolving the eeect of the stii source terms. We assume that the system satisses a cert...
متن کاملAn approximate two-dimensional Riemann solver for hyperbolic systems of conservation laws
A two-dimensional Riemann solver is proposed for the solution of hyperbolic systems of conservation laws in two dimensions of space. The solver approximates the solution of a so-called angular two-dimensional Riemann problem as the weighted sum of the solutions of one-dimensional Riemann problems. The weights are proportional to the aperture of the regions of constant state. The two-dimensional...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 34 شماره
صفحات -
تاریخ انتشار 2012